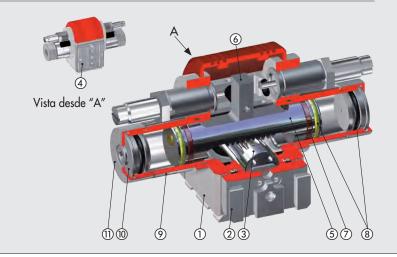

ACTUADOR ROTATORIO SERIE DAPK

El actuador giratorio DAPK se caracteriza por un nivel de rendimiento excepcionalmente alto, gran facilidad de uso, precisión de posicionamiento y larga vida útil. Cuenta con un mecanismo patentado de ajuste de holgura de piñón y cremallera. El ángulo de rotación se puede ajustar entre 0 ° y 180 °. También se proporciona un rebasamiento de 3 ° más allá de 180 ° en cada lado. Los topes de posición final pueden ser un topes mecánicos elásticos (para aplicaciones con masas y velocidades reducidas) o amortiguadores hidráulicos. La posición final se puede detectar utilizando la versión magnética, que es adecuada para sensores magnéticos, o la versión adecuada para sensores inductivos. Versiones con dos, tres y cuatro posiciones también están disponibles. La tercera y cuarta posición se pueden agregar en una etapa posterior instalando el accesorio provisto. Las versiones con un distribuidor rotativo neumático se pueden utilizar para suministrar aire comprimido a la placa giratoria desde el interior, evitando así el uso de tuberías giratorias externas. En este caso, la placa giratoria se puede elegir entre una montada en línea y otra inclinada 90°.



DATOS TÉCNICOS		DAPK-1	DAPIK-1	DAPK-2	DAPIK-2
Flujos de aire internos		NO	SÍ	NO	SÍ
Presión operativa	bar		2 0	7	
	MPa		0.2 c	0.7	
	psi		29 a	101	
Rango de temperaturas	°C		-10	a 80	
	°F			176	
Fluido		Aire comprimido filtrado de 20 µm lubricado o seco. Si se lubrica, esta debe ser continua.			
Amortiguación del tope de final de posición		Amortiguadores hidráulicos y tope mecánico elástico			
Control de final de posición		Sensores inductivos, sensores magnéticos			
Ángulo de rotación	٥	Ajustable de 0 a 180			
Diámetros	mm	2	20	3	2
Momento de inercia alrededor del eje central	kg⋅m²	0.0	004	0.0	30
Esfuerzo de torsión teórico a 6	Nm	1	.1	3.	8
Momento máximo de vuelco	Nm				
Tensión / compresión axial permisible	N	90 / 120 240 / 460		460	
energía de tensión crítica permisible:					
Con tope mecánico elástico	Joule		.02	0.0	
Con amortiguadores	Joule		.20	0.0	
Repetibilidad (en 100 carreras a condiciones	٥		0.01	≤ 0.01	- 0.02
Peso de la versión de 2 posiciones	kg	0.56	0.71	1.50	1.73
Peso de la versión de 3 posiciones	kg	0.66	0.80	1.67	1.90
Peso de la versión de 4 posiciones	kg	0.76	0.89	1.84	2.07

COMPONENTES

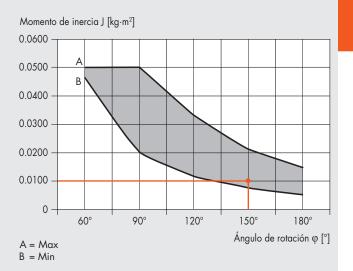
- CUERPO: aluminio anodizado en blanco
- 2 PLACA: aluminio anodizado en blanco
- ③ PIÑÓN: acero④ CUBIERTA DE LA INTERFAZ: aluminio anodizado en blanco
- ⑤ RACK: acero
- 6 CREMALLERA SECUNDARIA: acero
- ANILLO GUÍA: tecnopolímero especialJUNTAS: NBR
- TUBO: aluminio anodizado duro
- TAPA FINAL: aluminio anodizado duro
- 1) CUBIERTA: aluminio anodizado duro

ELECCIÓN DEL AMORTIGUADOR

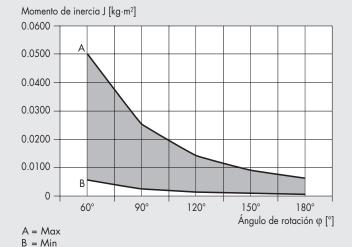
Para el correcto uso de DAPK-1 / DAPIK-1 y DAPK-2 / DAPIK-2, utilice el amortiguador que mejor se adapta a la aplicación Para DAPK-1 / DAPIK-1, sólo puede seleccionar un amortiguador

Para DAPK-2 / DAPIK-2, puede escoger 3 tipos de amortiguadores dependiendo del siguiente procedimiento:

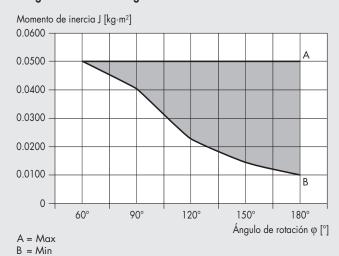
EJEMPLO

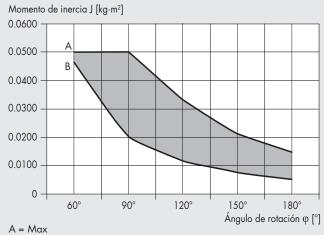

DAPK-2 con:

- Momento de inercia aplicado al actuador giratorio: J = 0.0100 kg·m2
- Ajuste del ángulo de rotación: φ = 150


Requisito: determine el amortiguador que mejor se adapte a la aplicación:

- 1. Calcule el momento de inercia del componente aplicado al actuador rotativo DAPK-2 / DAPIK-2. En nuestro caso el valor es $J = 0.0100 \text{ kg} \cdot \text{m} 2.$
- 2. Determine el ángulo de rotación que debe realizar el actuador giratorio. En nuestro caso el valor es $\varphi = 150^{\circ}$
- 3. Intersecte el ángulo y el momento de inercia en los diagramas "rango de uso del amortiguador" de los tres tipos de amortiguadores utilizados. Se elegirá el amortiguador cuyo punto esté dentro del área


En nuestro caso, el amortiguador obtenido es el "Amortiguador bajo pedido" de dureza media MC150EUMH2 (consulte la clave de cifrado).


Rango de uso del amortiguador MC150EUMH STD

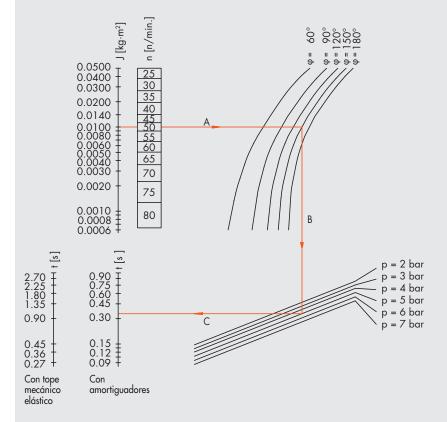
Rango de uso del amortiguador de alta dureza

Rango de uso del amortiguador de dureza media MC150EUMH2 STD

B = Min

El método utilizado para determinar el número teórico máximo de ciclos y el tiempo teórico de una rotación es el mismo para ambos tamaños de DAPK / DAPIK, lo que implica el uso de:

- "Tabla de rendimiento de DAPK-1 / DAPIK-1 con amortiguadores hidráulicos y buffers";
- "Tabla de rendimiento de DAPK-2 / DAPIK-2 con amortiguadores hidráulicos y buffers".


EJEMPLO

DAPK-2 con:

RENDIMIENTO

- Momento de inercia aplicado al actuador giratorio: J = 0.0100 kg.m²
- Ajuste del ángulo de rotación: φ = 150 °
- Presión de suministro: p = 5 bar

Requisito: determinar el número teórico máximo de ciclos y el tiempo teórico de una rotación:

- Centro de gravedad de la masa giratoria sobre el eje de rotación. Eje de rotación en cualquier posición.
- Centro de gravedad de la masa giratoria fuera del eje de rotación. Eje de rotación en posición vertical.

Ejemplo de hidráulico con amortiguadores:

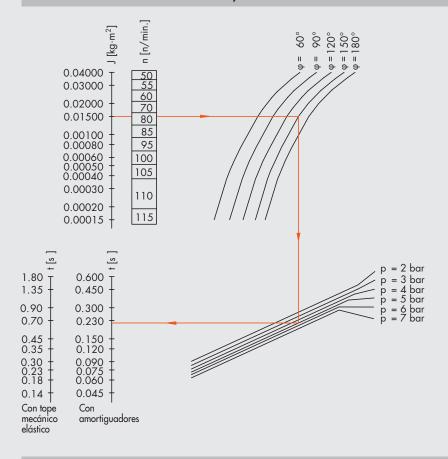
 $J = 0.010 \text{ kg} \cdot \text{m}^2$

 $\varphi = 150^{\circ}$

p = 5 bar

Resultados:

 $n_{max} = 50$ carreras dobles por minuto t = 0.34 s amortiguador estándar


- J = momento de inercia de la masa
- n = número máximo de carreras dobles por minuto para la versión con amortiguadores
- presión de accionamiento neumático
- t = tiempo transversal por carrera
- φ = ángulo de rotación
- 1. A partir del momento de inercia aplicado al actuador giratorio, se determina el número máximo de ciclos teóricos configurables (línea A). En nuestro caso el valor es = 50 ciclos / min.
- 2. Cuando se intercepta la línea del ángulo de rotación deseado, desplácese hacia abajo hasta la presión de suministro (línea B) y, al cruzar la escala indexada "t" (línea C), obtendrá el tiempo teórico de una rotación.
- 3. En nuestro caso el valor es t \approx 0.35 segundos

IMPORTANTE: el número máximo de ciclos y el tiempo de una rotación son datos teóricos y, como tal, es poco probable que se alcancen estos valores para aplicaciones particulares.

GRÁFICOS DE RENDIMIENTO PARA DAPK-1 y DAPIK-1 CON AMORTIGUADORES HIDRÁULICOS Y TOPES MECÁNICOS ELÁSTICOS

www.rodavigo.net

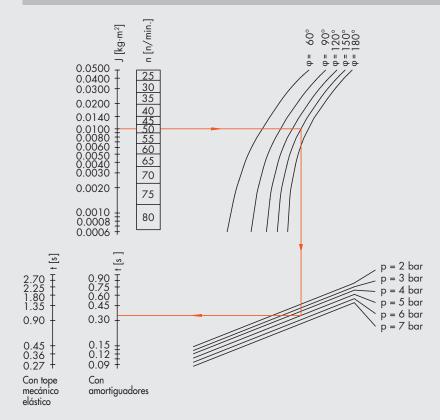
Aplicabilidad:

- Centro de gravedad de la masa giratoria sobre el eje de rotación. Eje de rotación en cualquier posición.
- Centro de gravedad de la masa giratoria fuera del eje de rotación. Eje de rotación en posición vertical.

Ejemplo de hidráulico con amortiguadores:

 $J = 0.0015 \text{ kg} \cdot \text{m}^2$

 $\varphi = 150^{\circ}$


p = 5 bar

Resultados:

 $n_{max} = 80$ carreras dobles por minu t = 0.22 s amortiguador estándar = 80 carreras dobles por minuto

- J = momento de inercia de la masa
- n = número máximo de carreras dobles por minuto para la versión con amortiguadores
- p = presión de accionamiento neumático
- t = tiempo transversal por carrera
- φ = ángulo de rotación

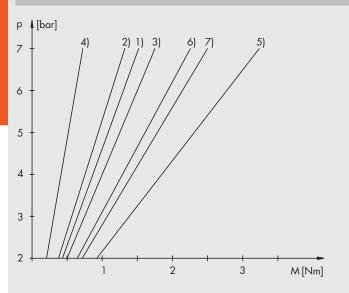
GRÁFICOS DE RENDIMIENTO PARA DAPK-2 y DAPIK-2 CON AMORTIGUADORES HIDRÁULICOS Y TOPES MECÁNICOS ELÁSTICOS

Aplicabilidad:

- Centro de gravedad de la masa giratoria sobre el eje de rotación. Eje de rotación en cualquier posición.
- Centro de gravedad de la masa giratoria fuera del eje de rotación. Eje de rotación en posición vertical.

Ejemplo de hidráulico con amortiguadores:

 $J = 0.010 \text{ kg} \cdot \text{m}^2$


 $\varphi = 150^{\circ}$ p = 5 bar

Results:

 $n_{max} = 50$ carreras dobies por minot t = 0.34 s amortiguador estándar = 50 carreras dobles por minuto

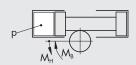
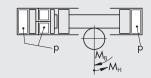

- J = momento de inercia de la masa
- n = número máximo de carreras dobles por minuto para la versión con amortiguadores
- = presión de accionamiento neumático
- t = tiempo transversal por carrera
- φ = ángulo de rotación

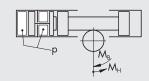
TABLA DE PRESIÓN/PAR DE DAPK-1, DAPIK-1, DZAK-1

VERSIÓN DE 2 POSICIONES

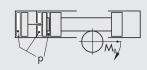

Final de posición DAPK izquierda/derecha

$$M_{H} = p \cdot 0.21 \longrightarrow 1$$

 $M_{B} = p \cdot 0.18 \longrightarrow 2$


VERSIÓN DE 3 POSICIONES

DAPK contra DZAK en la salida

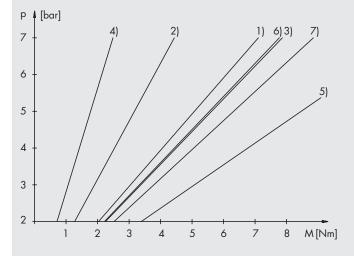

$$M_{H} = p \cdot 0.25$$
 \longrightarrow 3)
 $M_{B} = p \cdot 0.10$ \longrightarrow 4)

Salida DZAK, DAPK sin presión

$$M_{H} = p \cdot 0.46 \longrightarrow 5$$

 $M_{B} = p \cdot 0.32 \longrightarrow 6$

DAPK + DZAK



= presión de propulsión

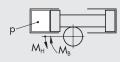
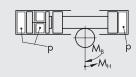

pressor de proposioni
momento de retención, es decir, el momento aplicable desde el exterior al eje del piñón estacionario, sin movimiento del piñón.
momento de movimiento, es decir, el momento disponible para el eje del piñón móvil debido al efecto del accionamiento neumático.

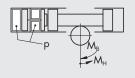
TABLA DE PRESIÓN/PAR DE DAPK-2, DAPIK-2, DZAK-2

VERSIÓN DE 2 POSICIONES


Final de posición DAPK izquierda/derecha

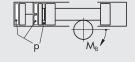
$$M_{\rm H} = p \cdot 1.01 \longrightarrow 1$$

 $M_{\rm B} = p \cdot 0.63 \longrightarrow 2$


VERSIÓN DE 3 POSICIONES

DAPK contra DZAK en la salida

Salida DZAK, DAPK sin presión

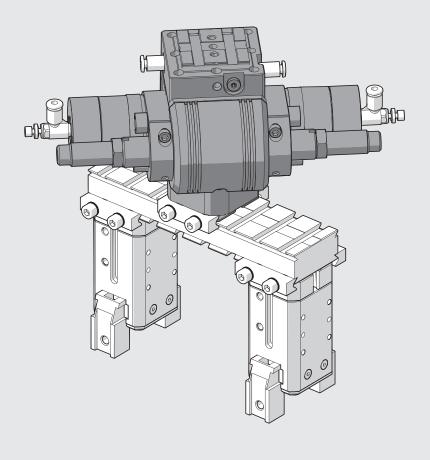

$$M_{H} = p \cdot 1.69 \longrightarrow 5$$

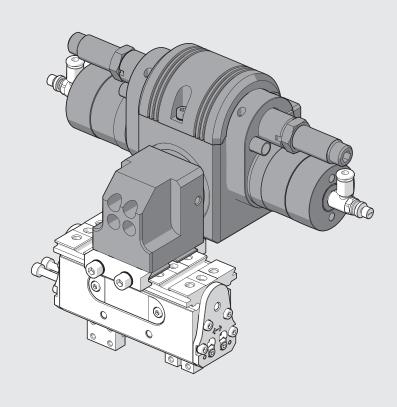
 $M_{B} = p \cdot 1.10 \longrightarrow 6$

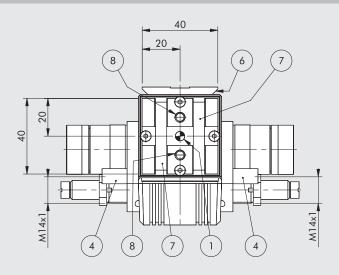
= presión de propulsión

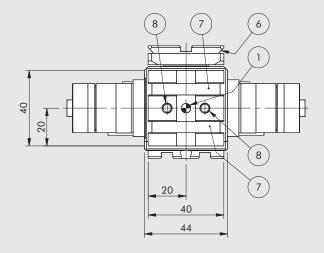
= momento de retención, es decir, el momento aplicable desde el exterior al eje del piñón estacionario, sin movimiento del piñón.

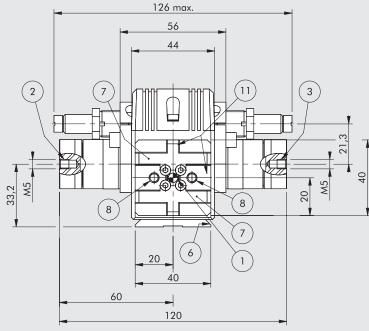
= momento de movimiento, es decir, el momento disponible para el eje del piñón móvil debido al efecto del accionamiento neumático.

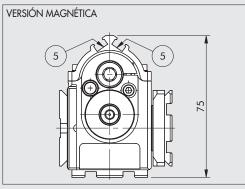

DAPK + DZAK

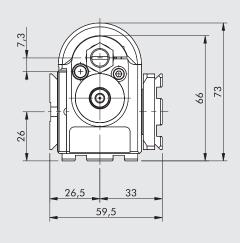



EJEMPLOS DE APLICACIÓN



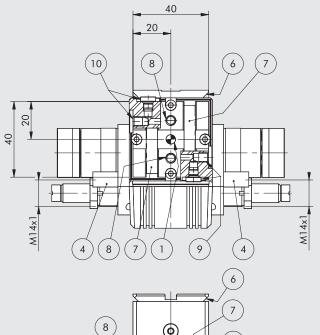

www.rodavigo.net

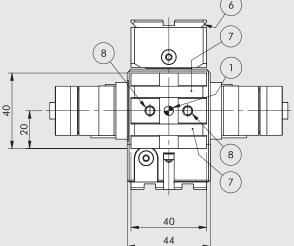

DIMENSIONES DEL ACTUADOR ROTATORIO DAPK-1

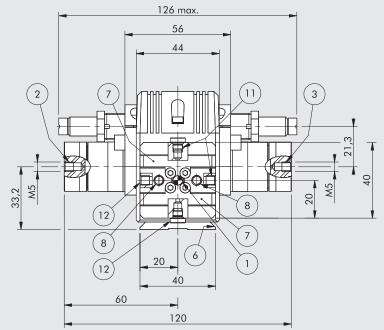


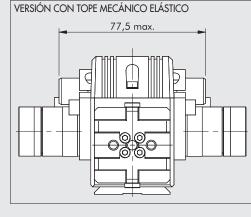
- Agujeros para pasadores de centrado Suministro de rotación derecho
- Suministro de rotación izquierdo
- Casquete para sensor inductivo
 Ranuras de fijación del sensor magnético o del sensor de posición
 Cola de milano para la fijación "V-Lock".
- Para dimensiones estándar, véase el **capítulo Adaptadores V-Lock**② Ranura para llave de precisión "V-Lock"

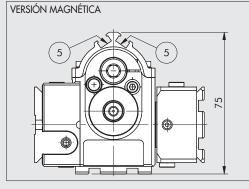
 ③ Agujeros roscados para fijación

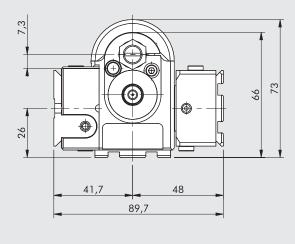


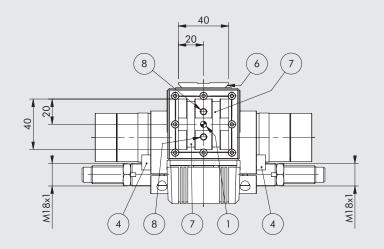

IMPORTANTE: 1° de rotación corresponde a un movimiento lineal de Δ = 0.126 mm

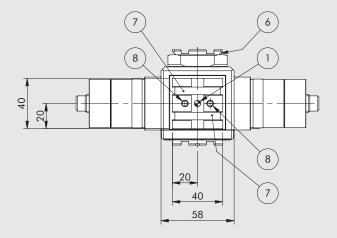


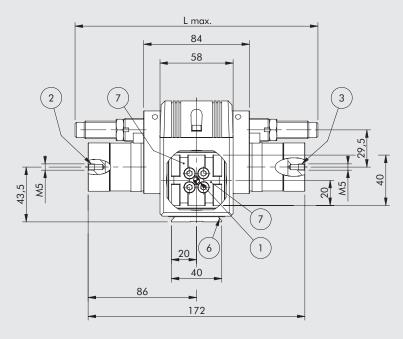

DIMENSIONES DEL ACTUADOR ROTATORIO DAPIK-1 CON FUJOS DE AIRE INTERNOS

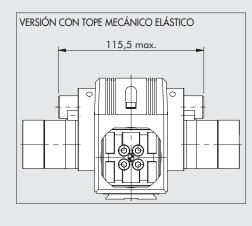

www.rodavigo.net

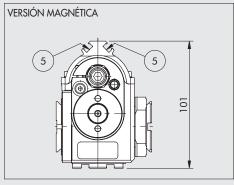


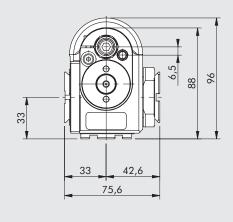

- Agujeros para pasadores de centrado Suministro de rotación derecho
- Suministro de rotación izquierdo


- Casquete para sensor inductivo
 Ranuras de fijación del sensor magnético o del sensor de posición
 Cola de milano para la fijación "V-Lock". Para dimensiones estándar, véase el **capítulo Adaptadores V-Lock** Ranura para llave de precisión "V-Lock"
- (7) (8) (9)
- Agujeros roscados para fijación Entradas de aire en la derecha (M5 roscado)
- (II) Entradas de aire en la izquierda (M5 roscado) Salidas de aire en la derecha (M5 roscado)
- Salidas de aire en la izquierda (M5 roscado)



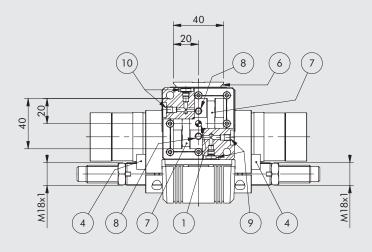

IMPORTANTE: 1° de rotación corresponde a un movimiento lineal de Δ = 0.126 mm

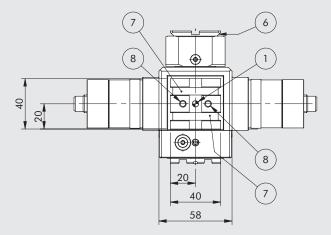

DIMENSIONES DEL ACTUADOR ROTATORIO DAPK-2

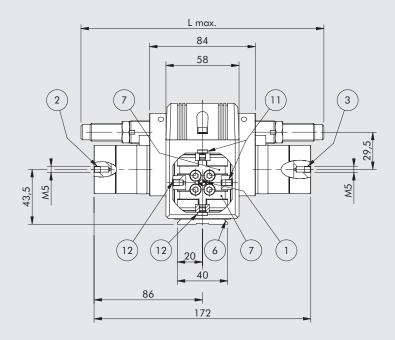


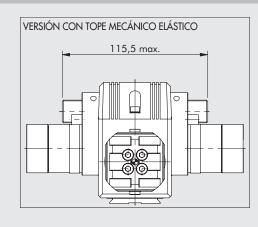
- Agujeros para pasadores de centrado Suministro de rotación derecho
- 2 3 4 5 6 Suministro de rotación izquierdo
- Casquete para sensor inductivo
 Ranuras de fijación del sensor magnético o del sensor de posición
 Cola de milano para la fijación "V-Lock".
- Para dimensiones estándar,
- véase el **capítulo Adaptadores V-Lock**Ranura para llave de precisión "V-Lock"

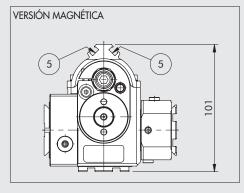
 Agujeros roscados para fijación

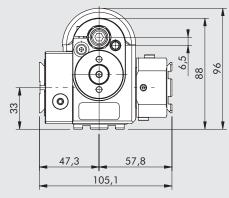



Amortiguadores	L
Estándar (H)	192.7 mm
Dureza media (H2)	192.7 mm
Dureza alta (M7)	209.5 mm

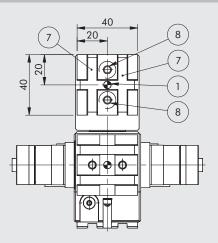

IMPORTANTE: 1° de rotación corresponde a un movimiento lineal de Δ = 0.183 mm


DIMENSIONES DEL ACTUADOR ROTATORIO DAPIK-1 CON FUJOS DE AIRE INTERNOS

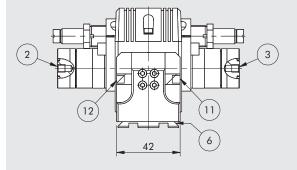


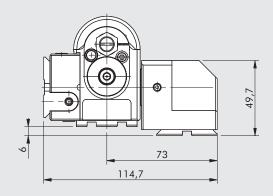


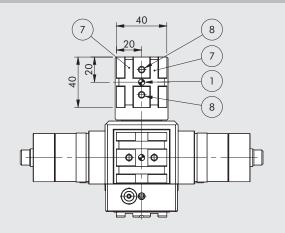
Amortiguadores Estándar (H) 192.7 mm Dureza media (H2) 192.7 mm 209.5 mm Dureza alta (M7)



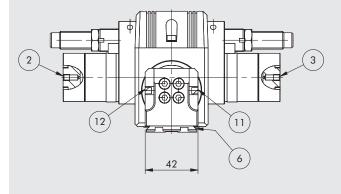
- Agujeros para pasadores de centrado Suministro de rotación derecho
- 2 3 4 5 6
- Suministro de rotación izquierdo
- Casquete para sensor inductivo Ranuras de fijación del sensor magnético o del sensor de posición Cola de milano para la fijación "V-Lock".
- Para dimensiones estándar, véase el capítulo Adaptadores V-Lock
- Ranura para llave de precisión "V-Lock"
- 7 8 9 10
- Agujeros roscados para fijación
 Entradas de aire en la derecha (M5 roscado)
 Entradas de aire en la izquierda (M5 roscado)
 Salidas de aire en la derecha (M5 roscado)
- (II)
- Salidas de aire en la izquierda (M5 roscado)

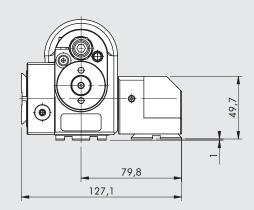

IMPORTANTE: 1° de rotación corresponde a un movimiento lineal de Δ = 0.183 mm


DIMENSIONES DEL ACTUADOR ROTATORIO DAPIK-1 + WAK-1 CON FUJOS DE AIRE INTERNOS Y RETORNO DE 90°


- Agujeros para pasadores de centrado
- (2) Suministro de rotación derecho
- Suministro de rotación izquierdo 3
- Cola de milano para la fijación "V-Lock". 6 Para dimensiones estándar, véase el **capítulo Adaptadores V-Lock** Ranura para llave de precisión "V-Lock"
- (8) (11)
- Agujeros roscados para fijación Salidas de aire en la derecha (M5 roscado)
- Salidas de aire en la izquierda (M5 roscado)

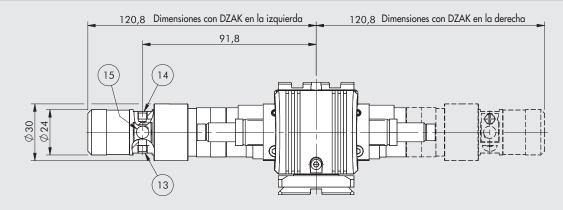
IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-1 en la página A3.143

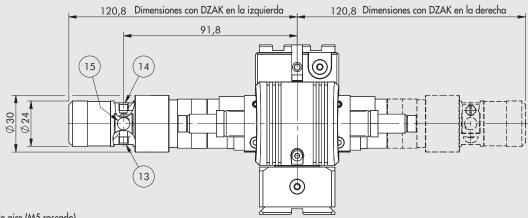

DIMENSIONES DEL ACTUADOR ROTATORIO DAPIK-2 + WAK-2 CON FUJOS DE AIRE INTERNOS Y RETORNO DE 90°



- Agujeros para pasadores de centrado Suministro de rotación derecho
- 2
- Suministro de rotación izquierdo
- Cola de milano para la fijación "V-Lock". Para dimensiones estándar, véase el **capítulo Adaptadores V-Lock** Ranura para llave de precisión "V-Lock"

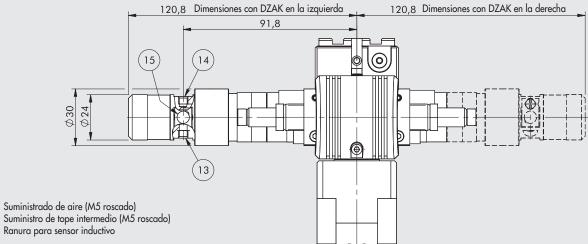
- Agujeros roscados para fijación Salidas de aire en la derecha (M5 roscado) (11)
- Salidas de aire en la izquierda (M5 roscado)


IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-2 en la página A3.145


DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPK-1 + DZAK-1 (derecho o izquierdo)

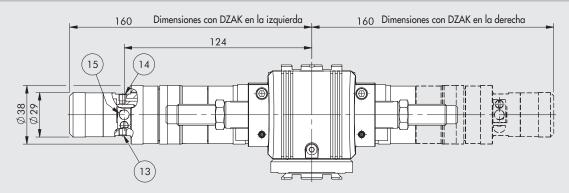
- Suministrado de aire (M5 roscado) Suministro de tope intermedio (M5 roscado)
- Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPK-1 en la página A3.142


DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPIK-1 + DZAK-1 CON FLUJOS DE AIRE INTERNOS (derecho o izquierdo)

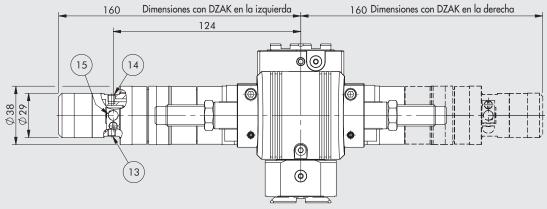
- Suministrado de aire (M5 roscado)
- Suministro de tope intermedio (M5 roscado)
- Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPK-1 en la página A3.143


DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPIK-1 + WAK-1 + DZAK-1 CON FLUJOS DE AIRE INTERNOS Y RETORNO DE 90° (derecho o izquierdo)

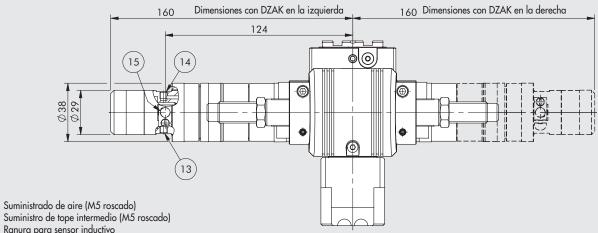
Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-1 + WAK-1 en la página A3.142


DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPK-2 + DZAK-2 (derecho o izquierdo)

- Suministrado de aire (M5 roscado) Suministro de tope intermedio (M5 roscado) Ranura para sensor inductivo

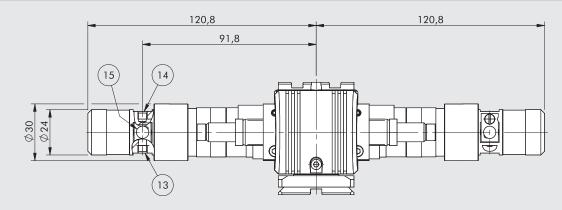
IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPK-2 en la página A3.144


DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPIK-2 + DZAK-2 CON FLUJOS DE AIRE INTERNOS (derecho o izquierdo)

- Suministrado de aire (M5 roscado)
- Suministro de tope intermedio (M5 roscado)
- Ranura para sensor inductivo

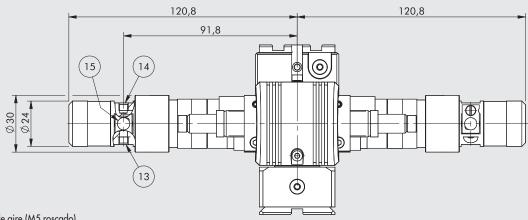
IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-2 en la página A3.145

DIMENSIONES DEL ACTUADOR ROTATORIO DE 3 POSICIONES DAPIK-2 + WAK-2 + DZAK-2 CON FLUJOS DE AIRE INTERNOS Y RETORNO DE 90° (derecho o izquierdo)



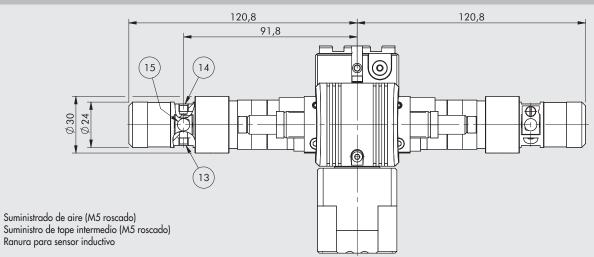
Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-2 + WAK-2 en la página A3.146

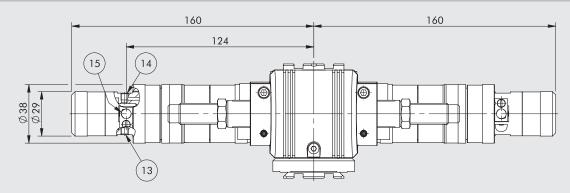

DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPK-1 + 2 DZAK-2

- Suministrado de aire (M5 roscado) Suministro de tope intermedio (M5 roscado) Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPK-1 en la página A3.142

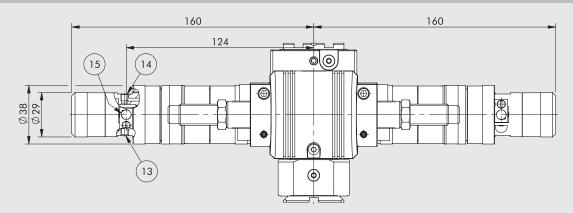

DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPIK-1 + 2 DZAK-1 CON FLUJOS DE AIRE INTERNOS

- Suministrado de aire (M5 roscado)
- Suministro de tope intermedio (M5 roscado) Ranura para sensor inductivo


IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-1 en la página A3.143

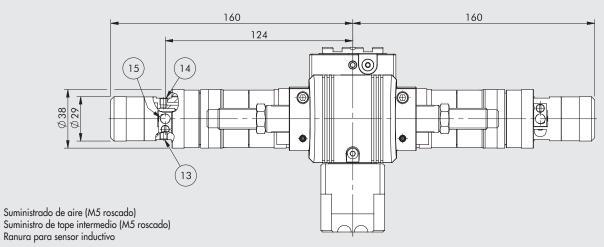
DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPIK-1 + WAK-1 + 2 DZAK-1 CON FLUJOS DE AIRE INTERNOS Y RETORNO DE 90°

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-1 + WAK-1 en la página A3.142


DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPK-2 + 2 DZAK-2

- Suministrado de aire (M5 roscado) Suministro de tope intermedio (M5 roscado) Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPK-2 en la página A3.144


DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPIK-2 + 2 DZAK-2 CON FLUJOS DE AIRE INTERNOS

- Suministrado de aire (M5 roscado) Suministro de tope intermedio (M5 roscado) Ranura para sensor inductivo

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-2 en la página A3.145

DIMENSIONES DEL ACTUADOR ROTATORIO DE 4 POSICIONES DAPIK-2 + WAK-2 + 2 DZAK-2 CON FLUJOS DE AIRE INTERNOS Y RETORNO DE 90°

IMPORTANTE: para cualquier dimensión que falte, refiérase al actuador rotatorio DAPIK-2 + WAK-2 en la página A3.146

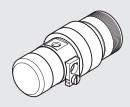
CLAVES DE CODIFICACIÓN 0 3 0 Κ 02 00 K20 TAMAÑO POSICIÓN POSICIÓN FINAL FAMÍLIA Actuador rotatorio serie DAPK / DAPIK **02** 2 posiciones O Sin flujo de aire K V-Lock 1 Tamaño 3 Con tope **0** Magnético (DAPK) interno mecánico elástico \$ No magnético 2 Tamaño 2 1 Con flujo de aire 3 posiciones Con amortiguadores (DAPK + DZAK) interno en línea estándar (STD) 2 Con flujo de aire 3 posiciones Bajo demanda (DAPK + DZAK) de 90° en línea 04 4 posiciones Con amortiguadores (DAPK + n.2 DZAK) de media dureza (H2) Con amortiguadores de alta dureza (M7)

www.rodavigo.net

▲ A la izquierda visto desde la placa rotatoria.

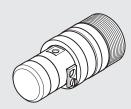
■ A la derecha visto desde la placa rotatoria.

• Sólo para tamaño 2.

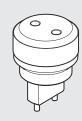

CÓDIGOS DE	PEDIDO		
Código	Descripción	Código	Descripción
APK-1	•	DAPK-2	•
2010203000K	DAPK-1 magnético con tope mecánico elástico	K2020203000K	DAPK-2 magnético con tope mecánico elástico
2010203S00K	DAPK-1 no magnético con tope mecánico elástico	K2020203S00K	DAPK-2 no magnético con tope mecánico elástico
2010205000K	DAPK-1 magnético con amortiguadores	K2020205000K	DAPK-2 magnético con amortiguadores estándar
2010205S00K	DAPK-1 no magnético con amortiguadores	K2020205S00K	DAPK-2 no magnético con amortiguadores estándar
2010213000K	DAPIK-1 magnético con tope mecánico elástico	K2020213000K	DAPIK-2 magnético con tope mecánico elástico
2010213S00K	DAPIK-1 no magnético con tope mecánico elástico	K2020213S00K	DAPIK-2 no magnético con tope mecánico elástico
2010215000K	DAPIK-1 magnético con amortiguadores	K2020215000K	DAPIK-2 magnético con amortiguadores estándar
2010215S00K	DAPIK-1 no magnético con amortiguadores	K2020215S00K	DAPIK-2 no magnético con amortiguadores estándar
201S303000K	DAPK-1 + DZAK-1 (SX) magnético con tope mecánico elástico	K202S303000K	DAPK-2 + DZAK-2 (SX) magnético con tope mecánico elástico
201S303S00K	DAPK-1 + DZAK-1 (SX) no magnético con tope mecánico elástico	K202S303S00K	DAPK-2 + DZAK-2 (SX) no magnético con tope mecánico elástico
01S305000K	DAPK-1 + DZAK-1 (SX) magnético con amortiguadores	K202S305000K	DAPK-2 + DZAK-2 (SX) magnético con amortiguadores estándar
01S305S00K	DAPK-1 + DZAK-1 (SX) no magnético con amortiguadores	K202S305S00K	DAPK-2 + DZAK-2 (SX) no magnético con amortiguadores estándar
01D303000K	DAPK-1 + DZAK-1 (DX) magnético con tope mecánico elástico	K202D303000K	DAPK-2 + DZAK-2 (DX) magnético con tope mecánico elástico
01D303S00K	DAPK-1 + DZAK-1 (DX) in magnetico con tope mecánico elástico	K202D303000K	DAPK-2 + DZAK-2 (DX) inaginates con tope mecanico elástico DAPK-2 + DZAK-2 (DX) no magnético con tope mecánico elástico
201D305000K	DAPK-1 + DZAK-1 (DX) magnético con amortiguadores	K202D305000K	DAPK-2 + DZAK-2 (DX) magnético con amortiguadores estándar
201D305S00K	DAPK-1 + DZAK-1 (DX) no magnético con amortiguadores	K202D305S00K	DAPK-2 + DZAK-2 (DX) no magnético con amortiguadores estándar
2010403000K	DAPK-1 + n°2 DZAK-1 magnético con tope mecánico elástico	K2020403000K	DAPK-2 + n°2 DZAK-2 magnético con tope mecánico elástico
2010403S00K	DAPK-1 + n°2 DZAK-1 no magnético con tope mecánico elástico	K2020403000K	DAPK-2 + n°2 DZAK-2 inagnetico con tope mecánico elástico
2010405000K	DAPK-1 + n°2 DZAK-1 no inagrienco con riope inecarinco erasinco	K2020405000K	DAPK-2 + n°2 DZAK-2 ind magnetico con amortiguadores estándar
010405500K	DAPK-1 + n°2 DZAK-1 inagrience con amortiguadores	K2020405000K	DAPK-2 + n°2 DZAK-2 magnetico con amortiguadores estándar
015313000K		K2020403300K	
2015313000K	DAPIK-1 + DZAK-1 (SX) magnético con tope mecánico elástico DAPIK-1 + DZAK-1 (SX) no magnético con tope mecánico elástico	K2025313500K	DAPIK 2 + DZAK-2 (SX) magnético con tope mecánico elástico
2015315300K	DAPIK-1 + DZAK-1 (SX) no magnetico con tope mecanico etastico DAPIK-1 + DZAK-1 (SX) magnético con amortiguadores	K2025315500K	DAPIK-2 + DZAK-2 (SX) no magnético con tope mecánico elástico DAPIK-2 + DZAK-2 (SX) magnético con amortiguadores estándar
2015315500K	DAPIK-1 + DZAK-1 (SX) no magnético con amortiguadores	K202S315S00K	DAPIK 2 + DZAK-2 (SX) no magnético con amortiguadores estándar
201D313000K	DAPIK-1 + DZAK-1 (DX) magnético con tope mecánico elástico	K202D313000K	DAPIK-2 + DZAK-2 (DX) magnético con tope mecánico elástico
201D313S00K	DAPIK-1 + DZAK-1 (DX) no magnético con tope mecánico elástico	K202D313S00K	DAPIK 2 + DZAK-2 (DX) no magnético con tope mecánico elástico
201D315000K	DAPIK-1 + DZAK-1 (DX) magnético con amortiguadores	K202D315000K	DAPIK 2 + DZAK-2 (DX) magnético con amortiguadores estándar
201D315S00K	DAPIK-1 + DZAK-1 (DX) no magnético con amortiguadores	K202D315S00K	DAPIK 2 + DZAK-2 (DX) no magnético con amortiguadores estándar
2010413000K	DAPIK-1 + n°2 DZAK-1 magnético con tope mecánico elástico	K2020413000K	DAPIK-2 + n°2 DZAK-2 magnético con tope mecánico elástico
2010413S00K	DAPIK-1 + n°2 DZAK-1 no magnético con tope mecánico elástico	K2020413S00K	DAPIK-2 + n°2 DZAK-2 no magnético con tope mecánico elástico
2010415000K	DAPIK-1 + n°2 DZAK-1 magnético con amortiguadores	K2020415000K	DAPIK-2 + n°2 DZAK-2 magnético con amortiguadores estándar
2010415S00K	DAPIK-1 + n°2 DZAK-1 no magnético con amortiguadores	K2020415S00K	DAPIK-2 + n°2 DZAK-2 no magnético con amortiguadores estándar
2010223000K	DAPIK-1 + WAK-1 magnético con tope mecánico elástico	K2020223000K	DAPIK-2 + WAK-2 magnético con tope mecánico elástico
2010223500K	DAPIK-1 + WAK-1 no magnético con tope mecánico elástico	K2020223S00K	DAPIK-2 + WAK-2 no magnético con tope mecánico elástico
2010225000K	DAPIK-1 + WAK-1 magnético con amortiguadores	K2020225000K	DAPIK-2 + WAK-2 magnético con amortiguadores estándar
2010225S00K	DAPIK-1 + WAK-1 no magnético con amortiguadores	K2020225S00K	DAPIK-2 + WAK-2 no magnético con amortiguadores estándar
201S323000K	DAPIK-1 + WAK-1 + DZAK-1 (SX) magnético con tope mecánico elástico	K202S323000K	DAPIK-2 + WAK-2 + DZAK-2 (SX) magnético con tope mecánico elástico
201S323S00K	DAPIK-1 + WAK-1 + DZAK-1 (SX) no magnético con tope mecánico elástico	K202S323S00K	DAPIK-2 + WAK-2 + DZAK-2 (SX) no magnético con tope mecánico elástico
01S325000K	DAPIK-1 + WAK-1 + DZAK-1 (SX) magnético con amortiguadores	K202S325000K	DAPIK-2 + WAK-2 + DZAK-2 (SX) magnético con amortiguadores estándar
01S325S00K	DAPIK-1 + WAK-1 + DZAK-1 (SX) no magnético con amortiguadores	K202S325S00K	DAPIK-2 + WAK-2 + DZAK-2 (SX) no magnético con amortiguadores están
01D323000K	DAPIK-1 + WAK-1 + DZAK-1 (DX) magnético con tope mecánico elástico	K202D323000K	DAPIK-2 + WAK-2 + DZAK-2 (DX) magnético con tope mecánico elástico
01D323S00K	DAPIK-1 + WAK-1 + DZAK-1 (DX) no magnético con tope mecánico elástico	K202D323S00K	DAPIK-2 + WAK-2 + DZAK-2 (DX) no magnético con tope mecánico elástic
201D325000K	DAPIK-1 + WAK-1 + DZAK-1 (DX) magnético con amortiguadores	K202D325000K	DAPIK-2 + WAK-2 + DZAK-2 (DX) magnético con amortiguadores estánda
201D325S00K	DAPIK-1 + WAK-1 + DZAK-1 (DX) no magnético con amortiguadores	K202D325S00K	DAPIK-2 + WAK-2 + DZAK-2 (DX) no magnético con amortiguadores están
2010423000K	DAPIK-1 + WAK-1 + n°2 DZAK-1 magnético con tope mecánico elástico	K2020423000K	DAPIK-2 + WAK-2 + n°2 DZAK-2 magnético con tope mecánico elástico
2010423S00K	DAPIK-1 + WAK-1 + n°2 DZAK-1 no magnético con tope mecánico elástico	K2020423S00K	DAPIK-2 + WAK-2 + n°2 DZAK-2 no magnético con tope mecánico elástico
2010425000K	DAPIK-1 + WAK-1 + n°2 DZAK-1 magnético con amortiguadores	K2020425000K	DAPIK-2 + WAK-2 + n°2 DZAK-2 magnético con amortiguadores estándar
2010425S00K	DAPIK-1 + WAK-1 + n°2 DZAK-1 no magnético con amortiguadores	K2020425S00K	DAPIK-2 + WAK-2 + n°2 DZAK-2 no magnético con amortiguadores estáno

ACCESORIOS

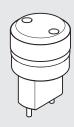
ACCESORIOS V-Lock


Véase la página A3.36

TOPE INTERMEDIO DZAK-1


Código Descripción Peso [g] 095K2000100K Tope intermedio DZAK-1

TOPE INTERMEDIO DZAK-2


Código Descripción
095K2000110K Tope intermedio DZAK-2 Peso [g] 214

LLAVE DE AJUSTE DZAK-1

Código Descripción Peso [g] **095K2000250K** Llave de ajuste DZAK-1

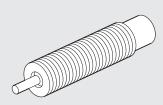
LLAVE DE AJUSTE DZAK-2

CódigoDescripción095K2000260KLlave de ajuste DZAK-1 Peso [g]

WAK-1

Descripción Peso [g] 095K2000150K Adaptador de ángulo WAK-1

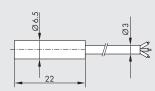
Nota: empaquetado individualmente con 4 tornillos y 4 arandelas


WAK-2

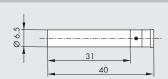
Código	Descripción	Peso [g]
095K2000160K	Adaptador de ángulo WAK-2	175

Nota: empaquetado individualmente con 4 tornillos y 4 arandelas

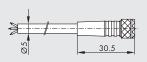
AMORTIGUADORES


Código	Descripción	Para
W0950005301	Amortiguadores - 2 M10 x 1	DAPK-1/DAPIK-1
0950004012	Amortiguadores estándar MC150EUMH M14 x 1.5	DAPK-2/DAPIK-2
0950004013	Amortiguadores de media dureza MC150EUMH2 M14 x 1.	5 DAPK-2/DAPIK-2
0950004014	Amortiguadores de alta dureza SC190EUM7 M14 x 1.5	DAPK-2/DAPIK-2

TOPE MECÁNICO ELÁSTICO


Código	Descripción	Para
095K2000200K	Tope mecánico elástico M14 x 1	DAPK-1/DAPIK-1
095K2000210K	Tope mecánico elástico M18 x 1	DAPK-2/DAPIK-2

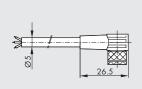
SENSOR DE INDUCCIÓN Ø 6.5


Coalgo	Descripcion
W095K030006	Sensor inductivo PNP de Ø 6.5 con LED de 2 m
W095K031006	Sensor inductivo NPN de Ø 6.5 con LFD de 2m

SENSOR DE INDUCCIÓN DE AJUSTE RÁPIDO Ø 6.5

Código	Descripción
W095K030009	Sensor inductivo PNP de Ø 6.5 con LED a presión

CABLE CON CONECTOR RECTO PARA SENSOR INDUCTIVO A PRESIÓN DE Ø 6.5 (INSTALACIÓN MÓBIL)

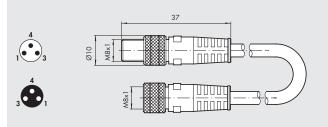


Pasador	Color del cable
1	Marrón
3	Azul
4	Negro

Código	Descripción
02400A0100	Conector hembra M8 3 PIN HIGH FLEX CL6 con cable L = 1 m
02400A0250	Conector hembra M8 3 PIN HIGH FLEX CL6 con cable L = 2.5 m
02400A0500	Conector hembra M8 3 PIN HIGH FLEX CL6 con cable L = 5 m
02400A1000	Conector hembra M8 3 PIN HIGH FLEX CL6 con cable L = 10 m

Cable de colocación móvil, clase 6 según IEC 60228

CABLE CON CONECTOR A 90° PARA SENSOR INDUCTIVO A PRESIÓN DE Ø 6.5 (INSTALACIÓN MÓBIL)



Pasador	Color del cable
1	Marrón
3	Azul Negro
4	Negro
-	ritegio

Código	Descripción
02400B0100	Conector hembra M8 3 PIN 90° HIGH FLEX CL6 con cable L = 1 m
02400B0250	Conector hembra M8 3 PIN 90° HIGH FLEX CL6 con cable L = 2.5 m
02400B0500	Conector hembra M8 3 PIN 90° HIGH FLEX CL6 con cable L = 5 m
02400B1000	Conector hembra M8 3 PIN 90° HIGH FLEX CL6 con cable L = 10 m

Cable de colocación móvil, clase 6 según IEC 60228

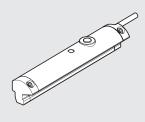
CONECTOR M8 M - M8 H PARA SENSOR INDUCTIVO A PRESIÓN DE Ø 6.5 (INSTALACIÓN MÓBIL)

Código 0240009009 Descripción Conector recto M8-M8 3-pin con cable L = 3 m

Nota: Puede utilizarse para la conexión directa a módulos de válvulas EB 80 y CM con **ENTRADAS** digitales

SENSOR RETRÁCTIL

SENSOR TIPO CUADRADO Última generación, fijación segura



Para códigos y datos técnicos generales, véase el capítulo A6

SENSOR DE POSICIÓN

Código	Descripción	Para
W0950000470	Sensor de posición con conector de 0.3 m M8 4-PIN LTS-032	DAPK-1/ DAPIK-1
W0950000471	Sensor de posición con conector de 0.3 m M8 4-PIN LTS-064	DAPK-2/DAPIK-2

Para datos técnicos generales, véase el capítulo A6

ACEITE

Código	Descripción	Volumer
9910490	PARALIQ P 460	80 ml

NOTAS

NOTAS		